Heat transfer corrected isothermal model for devolatilization of thermally-thick biomass particles

نویسندگان

  • Hao Luo
  • Hao Wu
  • Weigang Lin
  • Kim Dam-Johansen
چکیده

Isothermal model used in current computational fluid dynamic (CFD) model neglect the internal heat transfer during biomass devolatilization. This assumption is not reasonable for thermally-thick particles. To solve this issue, a heat transfer corrected isothermal model is introduced. In this model, two heat transfer corrected coefficients: HT-correction of heat transfer and HR-correction of reaction, are defined to cover the effects of internal heat transfer. A series of single biomass devitalization case have been modeled to validate this model, the results show that devolatilization behaviors of both thermally-thick and thermally-thin particles are predicted reasonable by using heat transfer corrected model, while, isothermal model overestimate devolatilization rate and heating rate for thermlly-thick particle.This model probably has better performance than isothermal model when it is coupled with CFD to model devolatilization of thermally-thick biomass particles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Analysis of Integrated Kinetics and Heat Transfer Models of Slow Pyrolysis of Biomass Particles using Differential Transformation Method

The inherent nonlinearities in the kinetics and heat transfer models of biomass pyrolysis have led to the applications of various numerical methods in solving the nonlinear problems. However, in order to have physical insights into the phenomena and to show the direct relationships between the parameters of the models, analytical solutions are required. In this work, approximate analytical solu...

متن کامل

Analysis of heat transfer in the pyrolysis of differently shaped biomass particles subjected to different boundary conditions: integral transform methods

The conversion and utilization of biomass as an alternative source of energy have been subjects of interest in various countries, but technical barriers to the technology and design of conversion plants have considerably impeded the development and use of alternative power sources. Theoretical studies on the conversion process enhance our understanding of the thermochemical conversion of solid ...

متن کامل

Estimation of Thermoelastic State of a Thermally Sensitive Functionally Graded Thick Hollow Cylinder: A Mathematical Model

The object of the present paper is to study temperature distribution and thermal stresses of a functionally graded thick hollow cylinder with temperature dependent material properties. All the material properties except Poisson’s ratio are assumed to be dependent on temperature. The nonlinear heat conduction with temperature dependent thermal conductivity and specific heat capacity is reduced t...

متن کامل

Pyrolysis of Shrinking Cylindrical Biomass Pellet

In the present study, impact of shrinkage on pyrolysis of biomass particles is studied employing a kinetic model coupled with heat transfer model using a practically significant kinetic scheme consisting of physically measurable parameters. The numerical model is used to examine the impact of shrinkage on temperature profile and pyrolysis conversion time considering cylindrical geometry. Finite...

متن کامل

Numerical simulation of Laminar Free Convection Heat Transfer around Isothermal Concave and Convex Body Shapes

In the present research, free convection heat transfer from isothermal concave and convex body shapes is studied numerically. The body shapes investigated here, are bi-sphere, cylinder, prolate and cylinder with hemispherical ends; besides, they have the same height over width (H/D = 2). A Numerical simulation is implemented to obtain heat transfer and fluid flow from all of the geometries in a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017